Abstract

Gynura pseudochina (L.) DC. is a Zn/Cd hyperaccumulative plant. In an in vivo system under controlled plant age, this research reveals that phenolic compounds and lignification play beneficial roles in protecting G. pseudochina from exposure to an excess of Zn and/or Cd, and Zn reduces Cd toxicity under the dual treatments. The total phenolic content (TPC), total flavonoid content (TFC), and half-maximal inhibitory concentration (IC50) values correspond to the metal dose-response curves. Liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (LC-ESI-QTOF-MS/MS) is used to characterize phenolic compounds and their glycosides, which could play roles in antioxidant activities and in the esterification of the cell wall, especially derivatives of p-coumaric and caffeic acid. Confocal laser scanning microscopy (CLSM) and micro X-ray fluorescence (μ-XRF) imaging revealed that the accumulation of Zn and Cd in the cell wall involves flavonoid compounds. Low extractable pools of Cd and Zn in the leaf extracts indicate that these elements are tightly bound to the plant biomass structures. The bulk X-ray absorption near edge structure (XANES) spectra indicate that Zn2+ and Cd2+ dominate with O and S ligands, which could be provided by cell walls, phenolic compounds, and sulphur protein. Consequently, the benefit of these results is to support the growth of G. pseudochina for phytoremediation in a Zn- and/or Cd-contaminated site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call