Abstract

Cholesterol auto-oxidation products, namely oxysterols, are widely present in cholesterol-rich foods. They are thought to potentially interfere with homeostasis of the human digestive tract, playing a role in intestinal mucosal damage. This report concerns the marked up-regulation in differentiated CaCo-2 colonic epithelial cells of two key inflammatory interleukins, IL-6 and IL-8, caused by a mixture of oxysterols representative of a high cholesterol diet.This strong pro-inflammatory effect appeared to be dependent on the net imbalance of red-ox equilibrium with the production of excessive levels of reactive oxygen species through the colonic NADPH-oxidase NOX1 activation. Induction of NOX1 was markedly while not fully inhibited by CaCo-2 cell pre-incubation with phenolic extracts obtained from well-selected wines from typical grape varieties grown in Sardinia. Oxysterol-dependent NOX1 activation, as well as interleukin synthesis, were completely prevented by Cannonau red wine extract that contains an abundant phenolic fraction, in particular phenolic acids and flavonoids. Conversely, cell pre-treatment with Vermentino white wine extract with smaller phenolic fraction showed only a partial NOX1 down-regulation and was ineffective in interleukin synthesis induced by dietary oxysterols.It is thus likely that the effects of Sardinian wine extracts against intestinal inflammation induced by dietary oxysterols are mainly due to their high phenolic content: low doses of phenolics would be responsible only for direct scavenging oxysterol-dependent ROS production. Besides this direct activity, an excess of phenolic compounds detectable in red wine, may exert an additional indirect action by blocking oxysterol-related NOX1 induction, thus totally preventing the pro-oxidant and pro-inflammatory events triggered by dietary oxysterols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.