Abstract
Annually, important quantities of olive residue are produced and may be the source of ecological damages. Like agricultural residues, which are abundant, renewable, low cost raw materials, olive stones are mainly subjected to biotechnological or chemical modifications in order to be transformed into valuable products (biofuels, biofertilizers, animal feed and chemical feed-stock). In aim to valorize olive stones, we are trying to identify the presence of different phenolic compounds in their dilute-acid hydrolysate (DAH). Phenolic compounds (PC) are considered as toxic material for fermentation process, therefore, their behavior are studied under overliming treatment with distinct pH levels (10 and 12), temperature (25 and 60°C) and detoxification time (15,30 and 60 min). Identification and quantification of phenolic compounds were performed by two chromatographic methods: Gas Chromatography mass spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC). A liquid-liquid microextraction procedure is used in conjunction with silylation prior to the analysis of the compounds by GC-MS. Derivatives of benzoic acid, cinnamic acid, simple phenols, and aldehydes were identified. For all treatments combinations, pH 12 was more effective in reducing the total amount of phenolic compounds. Treatment of the hydrolysate with alkali at pH 12, 60°C and 60 min resulted in up to 29% decrease in the concentration of total phenolic compounds. Tyrosol, which was the main phenolic compound decreased by 73% under the same treatment. Chromatographic methods contributed to an accurate quantification and better understanding of the behavior of each PC, solely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.