Abstract

Effects of water-soluble phenolic antioxidant sodium 3-(3'-tret-butyl-4'-hydroxyphenyl)-propyl thiosulfonate (TS-13), potassium 3,5-dimethyl-4-hydroxybenzyl thioetanoate (BEP-11-K) and potassium 3-(3',5'-ditretbutyl-4'-hydroxyphenyl)-propionate (potassium phenosan) on tumor cells proliferative activity and the role of redox-dependent and calcium-dependent signaling mechanisms in realization of tumor cell response to the antioxidant action were studied. Potassium phenosan and BEP-11-K were found to stimulate proliferation and ARE-inducing phenolic antioxidant TS-13 was found to inhibit tumor cell growth in culture. The tumor cell growth rate depended on the rate of intracellular reactive oxygen species production and was decreased by apocynin (a NADPH-oxidase inhibitor) and antimycin A (an ubiquinol-cytochrome c oxidoreductase inhibitor). TS-13 action on tumor cells was accompanied by a transient increase in intracellular reactive oxygen species production and the intracellular calcium concentration, whereas cell incubation with potassium phenosan and BEP-11-K did not influence the reactive oxygen species level and intracellular calcium ions. Cyclosporine A blocked the inhibitory effect of TS-13. Thus, it can be reasonably speculated that phenolic antioxidant TS-13 starts mitochondria-dependent apoptosis in tumor cells by the opening of permeability transition pores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call