Abstract

To produce a highly stable wood-based product with increased mechanical properties, phenol formaldehyde (PF) resin impregnation was combined with the viscoelastic thermal compression (VTC) process. Dimensional stability and bending stiffness were evaluated. Two PF resins with weight average molecular weights of 172 and 780 were studied at three different concentrations, 5, 10 and 20%. After 24-h room temperature water soak and 2-h boil, both PF treatments at all concentration levels showed high levels of dimensional stability compared to non-impregnated VTC processed controls. The higher molecular weight PF provided greater stability with an average thickness swell value of 12% compared to 20 and 37% for the lower molecular weight PF resin treatment and control, respectively. High anti-swelling efficiency values were recorded for both low and high molecular weight resins, implying these modifications were effective at reducing the volumetric swelling which occurred in the unmodified control. PF treatments were also extremely effective at reducing irreversible swelling. The low and high molecular weight resin treatments had 1/5th and 1/7th the irreversible swelling than the unmodified VTC processed controls, respectively. All dimensional stability values improved as resin concentrations increased. Both resin types at all concentration levels reduced Young’s modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.