Abstract

Bacillus thermoglucosidasius A7 degraded phenol at 65°C via the meta cleavage pathway. Five enzymes used in the metabolism of phenol were cloned from B. thermoglucosidasius A7 into pUC18. Nine open reading frames were present on the 8.1 kb insert, six of which could be assigned a function in phenol degradation using database homologies and enzyme activities. The phenol hydroxylase is a two-component enzyme encoded by pheA1 and pheA2. The larger component (50 kDa) has 49% amino acid identity with the 4-hydroxyphenylacetate hydroxylase of Escherichia coli, while the smaller component (19 kDa) is most related (30% amino acid identity) to the styrene monoxygenase component B from Pseudomonas fluorescens. Both components were neccessary for activity. The catechol 2,3-dioxygenase encoded by pheB has 45% amino acid identity with dmpB of Pseudomonas sp. CF600 and could be assigned to superfamily I, family 2 and a new subfamily of the Eltis and Bolin grouping. The 2-hydroxymuconic acid semialdehyde hydrolase (2HMSH), encoded by pheC, revealed the highest amino acid identity (36%) to the equivalent enzyme from Pseudomonas sp. strain CF600, encoded by dmpD. Based on sequence identity, pheD and pheE were deduced to encode the 2-hydroxypenta-2,4-dienoate hydratase (2HDH), demonstrating 45% amino acid identity to the gene product of cumE from Pseudomonas fluorescens and the acetaldehyde dehydrogenase (acylating) demonstrating 57% amino acid identity to the gene product of bphJ from Pseudomonas LB400.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.