Abstract

Activated sludge from a wastewater treatment plant consists of a consortium of microbes that utilize various organic molecules including persistent organic pollutants for their survival. Phenolic compounds and their derivatives along with dibenzofuran (DBF) are found as dominating pollutants in distillery waste. The acclimatization process leads to selective enrichment of the microbial community; and in this study, we report the acclimatizing effect of phenol on improving the treatment efficiency of two different distillery sludges—sludge from conventional aeration tanks (CAT), and from an extended aeration tank (EAT). The adaptation-dependent performance of activated biomass was studied by monitoring the increase in colony-forming units (CFUs) on mineral media and the utilization pattern for phenol (300×10 3 and 530×10 3 CFU for CAT and EAT sludge, respectively) and DBF (260×10 3 and 430×10 3 CFU for CAT and EAT sludge, respectively). The study showed that the acclimatization process remarkably improved the performance sludge for treatment of distillery wastewater. There was an improvement in chemical oxygen demand (COD) removal efficiency from 19% (unacclimatized sludge) to 31% in the case of acclimatized sludge (raw wastewater), which improved further to 82% and 87% with dilution of wastewater by 10 times (0.1×) and by 50 times (0.02×), respectively. Highest growth yields were observed with 0.1× wastewater (0.324 and 0.308 g g −1 d −1 for CAT and EAT sludges, respectively), while lower values are reported for the remaining two forms of wastewater. The study proposes that acclimatization step could be included as part of a treatment plant where the activated biomass could be intermittently metabolically charged by exposing it to selected molecules to increase treatment efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.