Abstract

Understanding the adsorption of organic molecules on metals is important in numerous areas of surface science, including electrocatalysis, electrosynthesis, and biosensing. While thiols are commonly used to tether organic molecules on metals, it is desirable to broaden the range of anchoring groups. In this study, we use a combined spectroelectrochemical and computational approach to demonstrate the adsorption of 4-cyanophenols (CPs) on polycrystalline gold. Using the nitrile stretching vibration as a marker, we confirm the adsorption of CP on the gold electrode and compare our results with those obtained for the thiol counterpart, 4-mercaptobenzonitirle (MBN). Our results reveal that CP adsorbs on the gold electrode via the OH linker, as evidenced by the similarity in the direction and magnitude of the nitrite Stark shifts for CP and MBN. This finding paves the way for exploring new approaches to modify electrode surfaces for controlled reactivity. Furthermore, it highlights adsorption on metals as an important step in the electroreactivity of phenols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.