Abstract

The mechanics of explosive eruptions influence magma ascent pathways. Vulcanian explosions involve a stop–start mechanism that recurs on various timescales, evacuating the uppermost portions of the conduit. During the repose time between explosions, magma rises from depth and refills the conduit and stalls until the overpressure is sufficient to generate another explosion. We have analyzed major elements, Cl, S, H2O, and CO2 in plagioclase-hosted melt inclusions, sampled from pumice erupted during four vulcanian events at Soufriere Hills volcano, Montserrat, to determine melt compositions prior to eruption. Using Fourier transform infrared spectroscopy, we measured values up to 6.7 wt.% H2O and 80 ppm CO2. Of 42 melt inclusions, 81 % cluster between 2.8 and 5.4 wt.% H2O (57 to 173 MPa or 2–7 km), suggesting lower conduit to upper magma reservoir conditions. We propose two models to explain the magmatic conditions prior to eruption. In Model 1, melt inclusions were trapped during crystal growth in magma that was stalled in the lower conduit to upper magma reservoir, and during trapping, the magma was undergoing closed-system degassing with up to 1 wt.% free vapor. This model can explain the melt inclusions with higher H2O contents since these have sampled the upper parts of the magma reservoir. However, the model cannot explain the melt inclusions with lower H2O because the timescale for plagioclase crystallization and melt inclusion entrapment is longer than the magma residence time in the conduit. In Model 2, melt inclusions were originally trapped at deeper levels of the magma chamber, but then lost hydrogen by diffusion through the plagioclase host during periodic stalling of the magma in the lower conduit system. In this second scenario, which we favor, the melt inclusions record re-equilibration depths within the lower conduit to upper magma reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call