Abstract

The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a comprehensive set of measurements in d + Au collisions. Observables in d + Au collisions were originally conceived as a control experiment where no quark-gluon plasma is formed and one could isolate so-called cold nuclear matter effects, including nuclear modified parton distributions and parton multiple scattering. However, recent data from the PHENIX experiment in d + Au, in conjunction with new p + Pb results at the Large Hadron Collider, give strong evidence for a very different picture. We present new results that hint at the formation of a small quark-gluon plasma, that though short lived, leaves a fingerprint of evidence on final state observables. These new results will be discussed in the context of competing theoretical interpretations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.