Abstract
The noncompetitive NMDA receptor antagonist phencyclidine (PCP) has psychotomimetic properties in humans and activates the frontal cortical dopamine innervation in rats, findings that have contributed to a hyperdopaminergic hypothesis of schizophrenia. In the present studies, the effects of the enantiomers of 3-amino-1-hydroxypyrrolid-2-one (HA966) on PCP-induced changes in monoamine metabolism in the forebrain of rats and monkeys were examined, because HA966 has been shown previously to attenuate stress- or drug-induced activation of dopamine systems. In rats, PCP (10 mg/kg, i.p.) potently activated dopamine (DA) turnover in the medial prefrontal cortex (PFC) and nucleus accumbens. Serotonin utilization was also increased in PFC. Pretreatment with either R-(+)HA966 (15 mg/kg, i.p.) or S-(-)HA966 (3 mg/kg, i.p.) partially blocked PCP-induced increases in PFC DA turnover, whereas neither enantiomer altered the effect of PCP on DA turnover in the nucleus accumbens or the PCP-induced increases in serotonin turnover in PFC. PCP (0.3 mg/kg, i.m.) exerted regionally selective effects on the dopaminergic and serotonergic innervation of the monkey frontal cortex, effects blocked by pretreatment with S-(-)HA966 (3 mg/kg, i. m.). Importantly, these data demonstrate that in the primate, PCP has potent effects on dopamine transmission in the frontal cortex, a brain region thought to be dysfunctional in schizophrenia. In addition, a role for S-(-)HA966 as a modulator of cortical monoamine transmission in primates is posited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.