Abstract

Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of suppressing disease caused by the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces the diffusible antibiotics phenazine-1-carboxylic acid, 2-hydroxyphenazine and pyrrolnitrin (PRN). Because the individual contribution of these antibiotics to PA23 biocontrol has not been defined, mutants deficient in the production of phenazine (PHZ), PRN or both antibiotics were created. Analysis of the PHZ mutant revealed enhanced antifungal activity in vitro and wild-type levels of Sclerotinia disease suppression. Conversely, the PRN- and the PRN/PHZ-deficient strains exhibited decreased antifungal activity in vitro and markedly reduced the ability to control Sclerotinia infection of canola in the greenhouse. These findings suggest that PRN is the primary antibiotic mediating biocontrol of this pathogen. Analysis of prnA-lacZ and phzA-lacZ transcriptional fusions revealed that PRN and PHZ are not subject to autoregulation; moreover, they do not cross-regulate each other. However, HPLC showed a twofold increase in PRN levels in the PHZ(-) background. Finally, PHZ, but not PRN production, is involved in biofilm development in P. chlororaphis PA23.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.