Abstract

The bacterial pathogen Acidovorax citrulli causes the destructive fruit blotch (BFB) on cucurbit plants. Pseudomonas chlororaphis YL-1 is a bacterial strain isolated from Mississippi soil and its genome harbors some antimicrobial-related gene clusters, such as phenazine, pyrrolnitrin, and pyoverdine. Here, we evaluated the antimicrobial activity of strain YL-1 as compared with its deficient mutants of antimicrobial-related genes, which were obtained using a sacB-based site-specific mutagenesis strategy. We found that only phenazine-deficient mutants ΔphzE and ΔphzF almost lost the inhibitory effects against A. citrulli in LB plates compared with the wild-type strain YL-1, and that the main antibacterial compound produced by strain YL-1 in LB medium was phenazine-1-carboxylic acid (PCA) based on the liquid chromatography-mass spectrometry (LC-MS) analysis. Gene expression analyses revealed that PCA enhanced the accumulation of reactive oxygen species (ROS) and increased the activity of catalase (CAT) in A. citrulli. The inhibition effect of PCA against A. citrulli was lowered by adding exogenous CAT. PCA significantly upregulated the transcript level of katB from 6 to 10 h, which encodes CAT that helps to protect the bacteria against oxidative stress. Collectively, the findings of this research suggest PCA is one of the key antimicrobial metabolites of bacterial strain YL-1, a promising biocontrol agent for disease management of BFB of cucurbit plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.