Abstract

ABSTRACT The processes of surfactant-enhanced soil washing have been widely applied to the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, accompanied by the production of soil washing eluent. In this study, novel composite materials of beads containing alginate, carboxymethyl cellulose and diatomite (SCD) were used to encapsulate Bacillus subtilis to remove phenanthrene (PHE) from simulated soil washing eluent with rhamnolipid. The effects of dosage, pH and temperature on the PHE removal performance were explored, and the optimal PHE removal conditions [SCD bead dose 16.2% (w:v), pH 7.1 and 30.6°C] were determined using response surface methodology. After incubation in simulated soil washing eluent for 7 d, SCD beads removed 84.92% of PHE, which was 49.18% higher than by free bacteria. In addition, SCD beads mainly removed PHE through biodegradation processes, and the degradation rate (1.38 mg L−1 d−1) was higher than that of free bacteria (0.64 mg L−1 d−1). Characterization results revealed that the immobilized substrate provided the micro-environment for bacteria and reduced the intense effect of high rhamnolipid concentration. Reusability results showed that SCD beads could be recycled four times to remove 80.05% of PHE. Collectively, SCD beads have great prospects for the decontamination of soil-washing eluent containing complex components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.