Abstract

Phenanthrene (Phe) is one of the most abundant polycyclic aromatic hydrocarbons in the aquatic environment as a result of human activities. It is widely accepted that Phe has cardiotoxic effects. Even so, knowledge concerning the mechanism(s) of cardiac development toxicity is still limited. In this study, we exposed zebrafish embryos to environmentally relevant concentrations of Phe and then investigated its cardiotoxic effects and the mechanism(s) involved. Some cardiac morphogenetic defects, which was characterized by an abnormally looped and enlarged heart, dilated and thinner ventricular wall, and increased interstitial fibrosis, were observed in the Phe treated groups. The mRNA and protein expression levels of matrix metalloproteinase-9 (MMP-9), as well as the MMP-9 activity, were induced. Moreover, during co-treatment of the zebrafish embryos with MMP-9 inhibitor, the cardiac defects caused by Phe were attenuated. In addition, Phe exposure led to an up-regulation of transforming growth factor β (TGF-β), which plays a crucial role in mediating cardiac fibrosis. Taken together, our data indicated that the exposure to Phe of zebrafish embryos disrupted normal cardiac development, and that the cardiac defects induced by Phe were mediated by the MMP-9, while TGF-β was also involved in these cardiac defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.