Abstract

The effects of a nonionic surfactant (Triton X-100) and a metabolic inducer (salicylate) were investigated in order to enhance the biodegradation rate of phenanthrene in soil slurry systems. The addition of salicylate reduced the time for the complete degradation of phenanthrene up to about 3 times (12.9 mg/L-d) even at highly concentrated soils of 650 mg/kg. The inducer was beneficial not only by increasing metabolic activity of existing cells, but also by increasing cell mass since it was utilized as an additional carbon source. The fraction of fast growing bacteria in total with salicylate addition was much higher compared to that without salicylate. The addition of Triton X-100 ranging from 0 to 10 g/L increased the apparent solubility of phenanthrene in soil slurry, but significantly inhibited the phenanthrene degradation in both slurry and pure liquid systems without any inhibition to cell growth. The phenanthrene degradation was inhibited much more with increasing the surfactant concentration. The inhibition by surfactant addition might be due to the prevention of bacterial adhesion to phenanthrene sorbed to soil and/or decrease of micellar-phase bioavailability

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.