Abstract

Despite the massive efforts to develop the treatment of pancreatic cancers, no effective application exhibits satisfactory clinical outcome. Macropinocytosis plays a critical role for continuous proliferation of pancreatic ductal adenocarcinoma (PDAC). In this study, we generated a screening method and identified phellodendrine chloride (PC) as a potential macropinocytosis inhibitor. PC significantly inhibited the viability of KRAS mutant pancreatic cancer cells (PANC-1 and MiaPaCa-2) in a dose-dependent manner; however, it did not affect the wild type KRAS pancreatic cancer cells (BxPC-3). Further experiments indicated that PC reduced the growth of PANC-1 cells through inhibition of macropinocytosis and diminishing the intracellular glutamine level. Disruption of glutamine metabolism led to enhance the reactive oxygen species level and induce mitochondrial membrane potential depolarization in PANC-1 cells. PC treatment caused increased Bax and decreased Bcl-2 expression, along with the activation of cleaved caspase-3, 7, 9 and cleaved-PARP, thus induced mitochondrial apoptosis. Moreover, PC inhibited macropinocytosis in vivo and effectively reduced the growth of PANC-1 xenograft tumors. All together, we demonstrated that inhibition of macropinocytosis might be an effective strategy to treat pancreatic cancers. Thus, PC could be a potential compound with improved therapeutic efficacy in patients with pancreatic cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call