Abstract
Cork is a renewable, non-wood high valued forest product, with relevant ecological and economic impact in the Mediterranean-type ecosystems. Currently, cork is ranked according to its commercial quality. The most valuable planks are chosen for cork stoppers production. Cork planks with adequate thickness and porosity are classified as stoppable quality cork (SQC). The chemical composition of cork is known, but the regulation of metabolic pathways responsible of cork production and composition, hence of cork quality, is largely unknown. Here, we tested the hypothesis that post-genomic events may be responsible for the development of SQC and N-SQC (non-stoppable quality cork). Here, we show that combined proteomics and targeted metabolomics (namely soluble and cell wall bound phenolics) analyzed on recently formed phellem allows discriminate cork planks of different quality. Phellem cells of SQC and N-SQC displayed different reducing capacity, with consequential impact on both enzymatic pathways (e.g., glycolysis) and other cellular functions, including cell wall assembly and suberization. Glycolysis and respiration related proteins were abundant in both cork quality groups, whereas the level of several proteins associated to mitochondrial metabolism was higher in N-SQC. The soluble and cell wall-bound phenolics in recently formed phellem clearly discriminated SQC from N-SCQ. In our study, SQC was characterized by a high incorporation of aromatic components of the phenylpropanoid pathway in the cell wall, together with a lower content of hydrolysable tannins. Here, we propose that the level of hydrolysable tannins may represent a valuable diagnostic tool for screening recently formed phellem, and used as a proxy for the quality grade of cork plank produced by each tree.
Highlights
Cork is a renewable natural product, and its industrial exploitation allows maintain the Quercus suber forests, characteristic landscape of the Mediterranean ecosystem
The method is a better proxy for the reducing capacity of the sample, showing that non-stoppable quality cork (N-stoppable cork quality (SQC)) had a higher reducing capacity than SQC
A higher content of soluble phenolic compounds was found in N-SQC producing cells than in SQC producing cells
Summary
Cork is a renewable natural product, and its industrial exploitation allows maintain the Quercus suber forests, characteristic landscape of the Mediterranean ecosystem. These ecosystems are designated as “montado” or “dehesa” in Portugal or Spain, respectively. Cork consists of both insoluble and soluble components (Pereira, 2007). The insoluble components include aliphatic suberin (often designated as suberin), aromatic suberin (designated as lignin-like), cellulose and hemicelluloses (Silva et al, 2005; Pereira, 2007). The most abundant extractives are typically waxes and tannins (Silva et al, 2005)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.