Abstract

One of the major challenges in human genetics is to identify functional effects of coding and non-coding single nucleotide variants (SNVs). In the past, several methods have been developed to identify disease-related single amino acid changes but only few tools are able to score the impact of non-coding variants. Among the most popular algorithms, CADD and FATHMM predict the effect of SNVs in non-coding regions combining sequence conservation with several functional features derived from the ENCODE project data. Thus, to run CADD or FATHMM locally, the installation process requires to download a large set of pre-calculated information. To facilitate the process of variant annotation we develop PhD-SNPg, a new easy-to-install and lightweight machine learning method that depends only on sequence-based features. Despite this, PhD-SNPg performs similarly or better than more complex methods. This makes PhD-SNPg ideal for quick SNV interpretation, and as benchmark for tool development. Availability: PhD-SNPg is accessible at http://snps.biofold.org/phd-snpg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.