Abstract
Acetaminophen is commonly found in aquatic environments because it is widely used as an analgesic. In this study, the extent of transformation and adsorption of acetaminophen by manganese dioxide (MnO2) at different pH conditions was systematically investigated. The adsorption of acetaminophen by MnO2 was significant under acidic conditions but negligible under neutral and alkaline conditions. This indicates that the rate-determining steps in the removal of acetaminophen are electron transfer under acidic conditions and precursor complex formation under neutral and alkaline conditions. The kinetic simulation result is consistent with the above results, and the kinetics can be described using a surface complexation and transformation kinetic model if the initial concentration of acetaminophen exceeds the total concentration of the reactive surface sites on MnO2. Otherwise, the Michaelis–Menten model and the pseudo-first-order kinetic model can be used to describe the removal kinetics under acidic conditions and under neutral and alkaline conditions, respectively. The main transformation products were p-benzoquinone and a dimer of 4-aminophenol and acetaminophen under acidic and alkaline conditions, respectively. This indicates that dehydration–oxidation is the main pathway only under acidic conditions. Under alkaline conditions, the main transformation mechanism is dimerization–hydrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.