Abstract

Data structures such as *BMDs, HDDs, and K*BMDs provide compact representations for functions which map Boolean vectors into integer values, but not floating point values. We propose a new data structure, called Multiplicative Power Hybrid Decision Diagrams (*PHDDs), to provide a compact representation for functions that map Boolean vectors into integer or floating point values. The size of the graph to represent the IEEE floating point encoding is linear with the word size. The complexity of floating point multiplication grows linearly with the word size. The complexity of floating point addition grows exponentially with the size of the exponent part, but linearly with the size of the mantissa part. We applied *PHDDs to verify integer multipliers and floating point multipliers before the rounding stage, based on a hierarchical verification approach. For integer multipliers, our results are at least 6 times faster than *BMDs. Previous attempts at verifying floating point multipliers required manual intervention. We verified floating point multipliers before the rounding stage automatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.