Abstract

We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO3) hybrid nanoparticles (DOX-CaCO3-MNPs) through a block copolymer templated in situ mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO2) bubbles and showed excellent echo persistence. In vivo results demonstrated that the DOX-CaCO3-MNPs generated CO2 bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO3-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO2 bubbles necessary for US contrast. The DOX-CaCO3-MNPs could also trigger the DOX release simultaneously with CO2 bubble generation at the acidic tumoral environment. The DOX-CaCO3-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.