Abstract

Crack detection plays a vital role in concrete surface maintenance. Deep-learning-based methods have achieved state-of-the-art results. However, these methods have some drawbacks. Firstly, a single-sized convolutional kernel in crack image segmentation tasks may result in feature information loss for small cracks. Secondly, only using linear interpolation or up-sampling to restore high-resolution features does not restore global information. Thirdly, these models are limited to learning edge features, causing edge feature information loss. Finally, various stains interfere with crack feature extraction. To solve these problems, a pyramid hierarchical convolution module (PHCM) is proposed by us to extract the features of cracks with different sizes. Furthermore, a mixed global attention module (MGAM) was used to fuse global feature information. Furthermore, an edge feature extractor module (EFEM) was designed by us to learn the edge features of cracks. In addition, a supplementary attention module (SAM) was used to resolv interference in stains in crack images. Finally, a pyramid hierarchical-convolution-based U-Net (PHCNet) with MGAM, EFEM, and SAM is proposed. The experimental results show that our PHCNet achieves accuracies of 0.929, 0.823, 0.989, and 0.801 on the Cracktree200, CRACK500, CFD, and OAD_CRACK datasets, respectively, which is higher than that of the traditional convolutional models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.