Abstract

Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

Highlights

  • Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance

  • The phylogenetic tree of the PhCESAs and A. thaliana AtCESAs shown in Fig. 1 further reveals that the cloned PhCESA3 is the ortholog of AtCESA3

  • As a step toward functional analysis, we examined the spatiotemporal expression of PhCESA3 petunia ‘Ultra’ using quantitative real-time PCR with gene-specific primers, and actin was used as an internal control

Read more

Summary

Introduction

Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. The Arabidopsis thaliana genome contains 10 CESA genes Among these genes, CESA1, CESA3, and CESA6 are required for cellulose biosynthesis in primary cell walls[11], whereas CESA4, CESA7, and CESA8 are required for cellulose biosynthesis during secondary wall deposition[6,7,8,9]. Studies on A. thaliana and Nicotiana tabacum L. variety Samsun NN have demonstrated that the expression of the CESA3 cellulose synthase gene that contains a point mutation, named ixr[1,2], results in greater conversion of plant-derived cellulose to fermentable sugars[17]. A developmental map of petunia petals has been assembled by reconstructing the pattern of cell expansion through measurement of cell size[18]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.