Abstract

Reactive extrusion was used for dicumyl peroxide (DCP)-initiated grafting of glycidyl methacrylate (GMA) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The effects of GMA and DCP content and their weight ratio on the GMA grafting percentage (GP%), the polymer melt viscosity, and the PHBV molecular weight were investigated. FTIR spectroscopy determined that the DCP did indeed initiate GMA grafting. However, the changes in both the zero-shear viscosity (η0) and the molecular weight suggested the existence of crosslinking products in the extruded polymers. A negative correlation between the degree of crystallinity (χc) of the PHBV-g-GMA and the GP% suggested the influence of chain branching on crystallinity. In addition, the GMA content was found as a key factor determining the GP%. The PHBV-g-GMA was used as a matrix polymer in cellulose nanocomposites to evaluate its effects on CNC dispersion and CNC-matrix adhesion relative to the unmodified PHBV matrix. The SEM images and the change in crystallization temperature suggested enhanced dispersion of CNC in a PHBV-g-GMA matrix. However, little increase in strength properties were found with CNC addition suggesting inadequate stress transfer between the matrix and CNCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call