Abstract

Ample empirical evidence suggests that mitochondrial dysfunction and endoplasmic reticulum (ER) stress play a crucial role in the pathogenesis of Parkinson’s disease (PD). Prohibitin (PHB), a mitochondrial inner-membrane protein involved in mitochondrial homeostasis and function, may be involved in the pathogenesis of PD. We investigated the functional role of PHB in mitochondrial biogenesis and ER stress in methyl-4-phenylpyridinium (MPP +)-induced in vivo and in vitro models of PD. The overexpression of PHB in SH-SY5Y cells block ed cell death and the apoptosis induced by MPP + incubation. PHB also block ed the activation of ER stress markers, including glucose-regulated protein 78, while increasing the expression of Xbox- binding protein 1 and caspase-12. Moreover, the intracerebroventricular administration of the PHB overexpression vector greatly block ed motor dysfunction and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurodegeneration in the mouse model of PD. The production of reactive oxygen species, ER stress, and autophagic stress induced by MPTP were also significantly block ed in PD mice overexpressing PHB. Our results suggest that PHB blocks the dopaminergic-neuron depletion by preserving mitochondrial function and inhibiting ER stress. The genetic manipulation of PHB may feature potential as a treatment for PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.