Abstract

We provide a method for analytically constructing high-accuracy templates for the gravitational-wave signals emitted by compact binaries moving in inspiralling eccentric orbits. In contrast to the simpler problem of modeling the gravitational-wave signals emitted by inspiralling circular orbits, which contain only two different time scales, namely, those associated with the orbital motion and the radiation reaction, the case of inspiralling eccentric orbits involves three different time scales: orbital period, periastron precession, and radiation-reaction time scales. By using an improved ``method of variation of constants,'' we show how to combine these three time scales, without making the usual approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new ``postadiabatic'' short-period contributions to the orbital phasing or, equivalently, new short-period contributions to the gravitational-wave polarizations, ${h}_{+,\ifmmode\times\else\texttimes\fi{}}$, that should be explicitly added to the ``post-Newtonian'' expansion for ${h}_{+,\ifmmode\times\else\texttimes\fi{}}$, if one treats radiative effects on the orbital phasing of the latter in the usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO network of ground based interferometric gravitational-wave detectors (especially if Kozai oscillations turn out to be significant in globular cluster triplets) and for the future space-based interferometer LISA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.