Abstract

The basal ganglia is thought to be critical for motor control and learning in mammals. In specific basal ganglia regions, gamma frequency oscillations occur during various behavioral states, including sleeping periods. Given the critical role of sleep in regulating vocal plasticity of songbirds, we examined the presence of such oscillations in the basal ganglia. In the song system nucleus Area X, epochs of high-gamma frequency (80-160 Hz) oscillation of local field potential during sleep were associated with phasic increases of neural activity. While birds were awake, activity of the same neurons increased specifically when birds were singing. Furthermore, during sleep there was a clear tendency for phase locking of spikes to these oscillations. Such patterned activity in the sleeping songbird basal ganglia could play a role in off-line processing of song system motor networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call