Abstract

Phasic and spatial time-averaged pressure distributions were measured in a 60-deg femoral artery branch model over a large range of branch flow ratios and at physiological Reynolds numbers of about 120 and 700. The results obtained with an in-vivo like flow wave form indicated spatial adverse time average pressure gradients in the branch vicinity which increased in magnitude with branch flow ratio, and the importance of the larger inertial effects at the higher Reynolds numbers. Pressure losses in the branch entrance region were relatively large, and corresponding flow resistances may limit branch flow, particularly at higher Reynolds numbers. The effect of branch flow was to reduce the pressure loss in the main lumen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.