Abstract

Three-dimensional (3D) reconstruction is an essential task in structured light field (SLF) related techniques and applications. This paper presents a new method to reconstruct a 3D object point by using many auxiliary points adjacent to it. The relationship between two points in a SLF system is derived. Different from conventional "direct" methods that reconstruct 3D coordinates of the object point by using phase, slope, disparity etc., the proposed method is an "indirect" method as the 3D coordinates of auxiliary points are not needed. Based on the auxiliary point theory, the wrapped phase obtained by 4-step phase-shifting method is sufficient for 3D reconstruction, without the need for phase unwrapping. To the best of our knowledge, this is the first strategy that combines the intrinsic characteristics of structured light and light field for phase-unwrapping-free 3D reconstruction. This paper also analyzes the constraints between system architecture parameters and phase rectification, phase to depth ratio, and presents a relatively simple criterion to guide the system design. Experimental results show that, with an appropriate system architecture, the proposed method can realize accurate, unambiguous, and reliable 3D reconstruction without phase unwrapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call