Abstract

The doubly fed induction generator (DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power system dynamics. However, most existing practical models of the DFIG are based on rectangular coordinates, in which frequency variation is neglected. In this paper, a phase–amplitude (P–A) model is proposed for a DFIG based on phase and amplitude of the internal voltage. The model structure is much like that of the synchronous generator, and the rotor voltage can manipulate both the amplitude and the phase of the internal voltage. Comparisons have been made between the new P–A model of the DFIG and the synchronous generator model, as well as the asynchronous motor model. The contributions of the new P–A model of the DFIG are discussed and it is demonstrated that the proposed model has better ability in describing power system dynamic phenomena such as voltage dynamics and structural dynamics in general. Simulation results and a field test validate these contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.