Abstract
Animal monitoring systems often rely on expensive and challenging GPS-based systems to obtain accurate trajectories. However, an alternative approach is to generate synthetic trajectories that exhibit similar statistical properties to real trajectories. These synthetic trajectories can be used effectively in the design of surveillance systems such as wireless sensor networks and drone-based techniques, which aid in data collection and the delineation of areas for animal conservation and reintroduction efforts. In this study, we propose a data generation method that utilizes simple phase-type distributions to produce synthetic animal trajectories. By employing probability distribution functions based on the exponential distribution, we achieve highly accurate approximations of the movement patterns of four distinct animal species. This approach significantly reduces processing time and complexity. The research primarily focuses on generating animal trajectories for four endangered species, comprising two terrestrial and two flying species, in order to demonstrate the efficacy of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.