Abstract
Hearing loss can mean severe impairment to the quality of life. However, the biomechanical mechanisms of how the hearing organ, i.e., the organ of Corti (OC), responds to sound are still elusive, largely because there is currently no means available to image the 3-D motion characteristics of the OC. We present a novel use of the phase-sensitive spectral domain optical coherence tomography (PSOCT) to characterize the motion of cellular compartments within the OC at a subnanometer scale. The PSOCT system operates at 1310 nm with a spatial resolution of ∼16 μm and an imaging speed of 47,000 A-lines/s. The phase changes of the spectral interferograms induced by the localized tissue motion are used to quantify the vibration magnitude. Fourier transform analysis of the phase changes improves the system sensitivity to sense minute vibrations smaller than 1 nm. We demonstrate that the PSOCT system is feasible to image the meaningful vibration of cellular compartments within the OC with an unprecedented sensitivity down to ∼0.5 Å.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.