Abstract
We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EoS) is specified. The high-temperature (QGP) phase is modelled by a non-perturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EoS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in the rate calculations. Dilepton emission in the QGP phase is then calculated within the quasiparticle model. In the hadronic phase, both temperature and finite baryon density effects on the photon spectral function are incorporated. Existing dilepton data from CERES at 158 and 40 AGeV Pb-Au collisions are well described, and a prediction for the PHENIX setup at RHIC for sqrt(s) = 200 AGeV is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.