Abstract

Delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high-precision differential astrometry measurements of δ Equ from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 μas. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within one twentieth of a parsec, and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans to improve this deficiency and discuss the outlook for further study of this binary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.