Abstract

ABSTRACTCeramics within the compositional series Ca4-xGdxMn2Ti7O20+x/2 (x = 0, 1, 2, 3, 4) and a sample with Ca2U2Ti7O20 formulation were studied as promising matrices for immobilization of rare earth (RE) and actinide (An) constituents of high level waste (HLW). The samples were prepared by cold pressing of oxide mixtures in pellets at 200 MPa followed by their sintering at 1400 °C or melting at 1500 °C and examined with X-ray diffraction, scanning and transmission electron microscopy. At x=0 and x=1 a perovskite – pyrophanite assemblage occurred. The sample with x=2 consisted of murataite and perovskite. Murataite was a major phase in the sample with x=3 (pyrochlore and perovskite were minor phases) and the only phase in the sample with x=4 prepared under oxidizing conditions (in air). The latter was composed of two murataite varieties with seven- and five-fold fluorite unit cells. The sample with the same formulation but synthesized under reducing conditions contained pyrochlore as an extra phase. Coupled substitution 2 Gd3+ = Ca2+ + U4+ resulted in formation of pyrochlore as the major phase. Mu-rataite and perovskite are considered as the host phases for rare earths and actinides mainly trivalent, including Pu(III), Am(III), and Cm(III), and corrosion products (Mn, Fe, Al) whereas pyrochlore is the host phase for rare earths and tetravalent actinides (U(IV), Np(IV), Pu(IV)). This makes the system of calcium, gadolinium, manganese, and titanium oxides prospective for immobilization of RE – An fraction of HLW containing minor corrosion products (iron group elements).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call