Abstract

An understanding of the impacts regarding different phases of inorganic materials on heavy metal removal is indispensable, owing to the intrinsic structure of materials that can affect its properties. In this study, the distinct adsorption behaviors of heavy metals (Pb(II) and Cu(II)) on different phases of MoS2 (metallic phase (1T) and semiconducting phase (2H)) were theoretically and experimentally investigated. According to the computational results, both Pb(II) and Cu(II) have formed more stable complexes on 1T-MoS2 compared to those on 2H-MoS2 due to the lower adsorption energy (Ead). This phenomenon indicates that Pb(II) and Cu(II) were more preferably adsorbed onto 1T-MoS2. Based on the results of the computational studies, two-dimensional (2D) MoS2 nanosheets with identical 1T and 2H phases were synthesized via a facile hydrothermal reaction. As we surmised, 1T-MoS2 achieved excellent Pb(II) and Cu(II) adsorption capacities, which were 147.09 and 82.13 mg/g at 298 K, respectively, compared to those of 2H-MoS2 (i.e., 64.16 and 50.74 mg/g at 298 K). Moreover, 1T-MoS2 has shown other superior properties, such as (i) ultrafast adsorption kinetics and (ii) great anti-interference activity toward other existing cations, compared to 2H-MoS2. Extensive computations and characterizations of MoS2-Pb and -Cu adsorption complexes illustrated that the active S sites were indispensable for heavy metal adsorption. Overall, for the first time, we provide evidence that 1T-MoS2 is more functional in heavy metal removal compared to 2H-MoS2, which can guide and expand the applications of MoS2-based adsorbents in environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.