Abstract
ABSTRACTIn the continuum context, the displacements of atoms induced by a dislocation can be approximated by a continuum disregistry field. In this work, two phase-field (PF)-based approaches and their variants are employed to calculate the disregistry fields of static, extended dislocations of pure edge and pure screw character in two face-centred cubic metals: Au and Al, which have distinct stable stacking fault energy and elastic anisotropy. A new truncated Fourier series form is developed to approximate the generalised stacking fault energy (GSFE) surface, which shows significant improvement over the previously employed Fourier series form. By measuring the intrinsic stacking fault (ISF) width and partial dislocation core size in different ways, the PF-based disregistry fields are quantitatively compared against those predicted by molecular statics. In particular, two new measures for the ISF widths are proposed and shown to overcome drawbacks of the more commonly used standards in the literature. Our calculations also show that continuum formulation of the elastic energy and the GSFE for a homogeneous surface can successfully characterise the core structure. Last, our comparisons highlight the significance of including the gradient energy in the free energy formulation when an accurate description of the dislocation core structure is desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.