Abstract

A two-phase diffuse interface model previously developed by the authors is used to simulate the buoyancy-driven flow and Rayleigh-Taylor instability of fluid layers inside a Hele-Shaw cell. The model assumes that the two phases coexist inside the diffuse interface with different properties and velocities. A separate momentum equation is used to calculate the slip velocity between the two phases within the diffuse interface. This two-phase approach is coupled with a phase-field equation for calculating the interface motion. The model is validated by comparing the calculated interface evolution, before any topology changes occur, to available results from a sharp interface model. Then, the flows and interface topology changes are investigated for fluid layers with a large density and viscosity contrasts. The convergence of the results with respect to the interface width is examined in detail. It is shown that the two-phase model converges better than standard diffuse interface models that assume a single velocity inside the diffuse interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.