Abstract

Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call