Abstract

The phase transformations and the microstructure developments in Fe-Cu base alloys during isothermal aging are simulated based on the phase-field method. Since the chemical free energy used in this simulation is obtained from the thermodynamic database of phase diagrams, the calculated microstructure changes are directly related to the phase diagram of the real alloy system. Firstly the phase decomposition and the microstructure changes in the Fe-Cu binary alloy system are demonstrated as the simple example of the phase-field modeling, i.e., the phase decomposition in bcc phase where the Cu-rich phase forms, the structural phase transformation from bcc to fcc phase in the Cu-rich nano-particle, and the shape change of fcc-Cu precipitates from sphere to rod. Secondly, the phase decomposition in bcc phase of the multi-component alloys such as the Fe-Cu-X (X=Mn,Ni) ternary system and the Fe-Cu-Mn-Ni quaternary alloy is simulated. At the early stage of aging, the Cu-rich zone with bcc structure begins to nucleate, and the component X (=Mn, Ni) is partitioned to the Cu-rich phase. When the Cu composition in the precipitate reaches equilibrium, the component X inside the precipitates moves toward to the interface region between the precipitate and matrix. Finally, there appears the shell structure that the Cu precipitates surrounded by the thin layer with high concentration of component X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.