Abstract

We adopt a thermodynamically consistent multi-phase, multi-component phase-field model to investigate the morphological evolution of peritectic transition in carbon steel though 2-D and 3-D simulations. By using phase-field method, we rationalize the peritectic solidification in both 2-D and 3-D simulations under different liquid supersaturations as well as on the δ particle with distinct microstructures. Through the comparison between 2-D and 3-D simulation results, we clarify the reason for the different growth rate of γ phase in two and three dimensions. In 3-D simulation, we observe the unequal growth rate of γ phase in radial and axis directions. In addition, a novel measurement method is proposed to determine the dynamic contact angle. We anticipate that the simulation results can be applied to interpret the isothermal peritectic transition with a liquid supersaturation in alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.