Abstract
Microstructure control is crucial for thermoelectrics since it is intimately related to the scattering mechanism of both electrons and phonons. Herein, we propose a new strategy to modify microstructure by phase regulation that simultaneously induces high carrier mobility and low lattice thermal conductivity. As demonstrated in layered SnSe2, the addition of Cu can induce a phase transition from space group P3¯m1 to P63mc. Due to the enlarged formation energy of stacking faults in the later phase, the stacking fault density is greatly reduced after heat treatment that leads to an increased grain size. Accordingly, the carrier mobility of SnSe1.97Br0.03–3 % Cu sample is enhanced by 100 % at room temperature. Furthermore, the reduction of stacking fault density is accompanied by the formation of pores in the matrix, which results in low lattice thermal conductivity. As a result, a record peak zT of 1.13 for SnSe2-based materials is achieved at 773 K, and the attained ZTave of 0.62 is a record-high value among n-type polycrystalline layered materials working in intermediate-to-high temperature region. This work provides a feasible strategy to decouple the electron and phonon transport in layered thermoelectric compounds by phase-dependent microstructure modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.