Abstract

We analyze heat and charge transport through a single-level quantum dot coupled to two BCS superconductors at different temperatures to first order in the tunnel coupling. In order to describe the system theoretically, we extend a real-time diagrammatic technique that allows us to capture the interplay between superconducting correlations, strong Coulomb interactions, and nonequilibrium physics. We find that a thermoelectric effect can arise due to the superconducting proximity effect on the dot. In the nonlinear regime, the thermoelectric current can also flow at the particle-hole symmetric point due to a level renormalization caused by virtual tunneling between the dot and the leads. The heat current through the quantum dot is sensitive to the superconducting phase difference. In the nonlinear regime, the system can act as a thermal diode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call