Abstract

The front-end hardware complexity of conventional full phased array (FPA) imaging is proportional to the number of array elements. Phased subarray (PSA) imaging has been proposed as a method of reducing the hardware complexity $and therefore system cost and size - while achieving near-FPA image quality. A new method is presented for designing the subarray-dependent interpolation filters suitable for wideband PSA imaging. The method was tested experimentally using pulse-echo data of a wire target phantom acquired using a 3.2-cm, 128-element capacitive micromachines ultrasonic transducer (CMUT) array with 85% fractional bandwidth at 3 MHz. A specific PSA configuration using seven 32-element subarrays was compared to FPA imaging, representing a 4-fold reduction in front-end hardware complexity and a 43% decrease in frame rate. For targets near the fixed transmit focal distance, the mean 6-dB lateral resolution was identical to that of FPA, the axial resolution improved by 4%, and the SNR decreased by 5 dB. Measurements were repeated for 10 different PSA configurations with subarray sizes ranging from 4 to 60. The lateral and axial resolutions did not vary significantly with subarray size; both the SNR and contrast-to-noise ration (CNR) improved with increased subarray size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.