Abstract

To optimize the reception and transmission in real-time changing links, phased array antennas have been increasingly investigated and applied in satellite applications. The phased array antenna technology intelligently combines multiple individual antenna elements to improve system performance in terms of gain enhancement, interference cancellation, radiation patterns formation, and radiation beam steering over a wide coverage. This article updates the latest development of metamaterial-based antenna (metantenna) technology in phased array antennas. With metama-terials' unique electromagnetic properties, which have never been found in nature, metantenna technology has been widely used to miniaturize the antenna element, broaden the bandwidth of the array, suppress the inter-element mutual coupling to eliminate scanning blindness, reduce the number of phase shifters, lower side-lobe levels, and so on. Recently, metantennas have been applied in the phased array technology to further boost the performance and reduce the volume and active device cost of the phased arrays in satellite systems. Two types of phased array metan-tennas are exemplified. One is the planar phased array metantenna operating at Ka-band with broadband circularly polarized operation over a wide scanning range. The other one is a hybrid architecture of a flat metalens and a circularly polarized phased array at X-band. The proposed low-profile architecture uses fewer phase shifters to lower the system complexity and cost. With performance enhancement and cost reduction, the phased array metantennas are ready to embrace more promising applications in next-generation satellite and radar systems as well as 5G Advanced and future 6G wireless communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call