Abstract

The crystal structure of anodically electrodeposited MnO2 nanocrystals can be manipulated by introducing complexing agents in the electrodeposition solutions. MnO2 nanocrystals with three types of crystal structures were observed: hexagonal ε-MnO2 (complex-free), defective rock salt MnO2 (ethylenediaminetetraacetic acid), and defective antifluorite MnO2 (citrate). The capacitive performance of the MnO2 nanocrystals depends strongly on their crystal structures. MnO2 with defective rock salt and antifluorite structures exhibit better capacitive properties than ε-MnO2. The electrochemical capacitance differences can be explained in terms of the crystal chemistry. In both the defective rock salt and antifluorite MnO2, an anomalous trend was observed. The specific capacitance does not decrease with increasing scanning rate. A possible reason is that certain physicochemical changes, such as phase transformations or morphology changes, occur preferentially at high cycling rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.