Abstract

A theoretical model is developed to ascertain the necessary band structure and equi-frequency contour (EFC) features of two-dimensional phononic crystals (PCs) for the realization of phase control between propagating acoustic waves. Two different PCs, a square array of cylindrical polyvinylchloride inclusions in air and a triangular array of cylindrical steel inclusions in methanol, offer band structures and EFCs with highly dissimilar features. We demonstrate that PCs with EFCs showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. Finite-difference time-domain simulations are employed to validate theoretical models and demonstrate the control of phase between propagating acoustic waves in PC structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call