Abstract
Ultra-wideband (UWB) pulse Doppler radars can be used for noncontact vital signs monitoring of more than one subject. However, their detected signals typically have low signal-to-noise ratio (SNR) causing significant heart rate (HR) detection errors, as the spurious harmonics of respiration signals and mixed products of respiration and heartbeat signals (that can be relatively higher than heartbeat signals) corrupt conventional fast Fourier transform spectrograms. In this paper, we extend the complex signal demodulation (CSD) and arctangent demodulation (AD) techniques previously used for accurately detecting the phase variations of reflected signals of continuous wave radars to UWB pulse radars as well. These detection techniques reduce the impact of the interfering harmonic signals, thus improving the SNR of the detected vital sign signals. To further enhance the accuracy of the HR estimation, a recently developed state-space method has been successfully combined with CSD and AD techniques and over 10 dB improvements in SNR is demonstrated. The implementation of these various detection techniques has been experimentally investigated and full error and SNR analysis of the HR detection are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.