Abstract

To investigate the nature of the phase wave between two connected oscillators, the photosensitive Belousov-Zhabotinsky (BZ) reaction was examined for two connected circular reaction fields, which were drawn by using computer software and then projected on a filter paper soaked with BZ solution by using a liquid-crystal projector. The difference in the time at which illumination was terminated between the two circles (Deltat(0)) was changed to control the time at which the phase wave was induced. When Deltat(0) was small (0-3 s), the phase wave normally propagated on the two circles in one direction. In contrast, when Deltat(0) was large (6-10 s), the velocity of the wave decreased near the intersection of the two circles. These different features are discussed in relation to the excitability of the circles and Deltat(0). The experimental results were qualitatively reproduced by a numerical calculation based on the modified three-variable Oregonator model that included photosensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.